• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Magnetic Impulses Help Create Muscle Activity Maps to Diagnose Motor Disorders

Magnetic Impulses Help Create Muscle Activity Maps to Diagnose Motor Disorders

© iStock

Using transcranial magnetic stimulation, Russians scientists were able to precisely track inter-muscle interactions between cortical representations of arm muscles. In the future, this method will help track brain changes in patients with motor disorders. The study was published in Human Brain Mapping. The project was supported by the Presidential Programme of the Russian Science Foundation (RSF).

Today, transcranial magnetic stimulation is actively used in psychiatry and neurology to treat depression, pain, and other conditions. But the method is still underused for the assessment of the motor cortex and musculoskeletal conditions in different disorders, exercise, or rehabilitation.

Russian researchers examined the reliability of motor mapping with the use of this method. The scholars managed to precisely track inter-muscle interactions between cortical representations of arm muscles. In the future, this will help track brain changes in patients with motor disorders.

Transcranial magnetic stimulation (TMS) helps doctors and researchers activate the human cortex with short magnetic impulses. Today, this method is used in psychiatry and neurology to treat, for example, such conditions as depression, pain, Parkinson’s disease and many disorders. In addition, TMS looks quite promising in terms of brain research and its functional mapping — the creation of brain maps. Combining TMS with MRI navigation is particularly effective. This method is called navigated TMS or nTMS. For some tasks, it is more precise than other brain mapping methods, such as functional MRI. In nTMS, the motor cortex is stimulated. This leads to muscle contractions, which are assessed by researchers who register muscle electric activity. The spatial accuracy of nTMS mapping may be as small as two millimeters, and its results are called muscle cortical representation (MCR) or a TMS motor map. This approach may be used to assess motor cortex changes in different disorders, exercise, or rehabilitation.

Arm muscle cortical representation in volunteers after two days of research
Source: Maria Nazarova et al. / Human brain mapping, 2021

Despite the advantages of nTMS mapping, in practice this method is rarely used. Further confirmation of data received with this method is needed. This issue was tackled by Russian researchers of the Centre for Cognition & Decision Making of HSE University’s Institute for Cognitive Neuroscience, the Research Centre of Neurology, and the Federal Centre of Brain Research and Neurotechnologies. They carried out a study of the absolute and comparative reliability of mapping data (muscle cortical representations) of arm muscles. For this purpose, they invited healthy male volunteers aged 19 to 33. None of them had any neurological or mental disorders; the scholars also excluded athletes, musicians, and surgeons, since they are likely to have highly precise motor function due to their work.

The volunteers participated in two nTMS mapping sessions separated by 5-10 days. The researchers registered contractions of three muscles that control the movement of hand and fingers. This way, they received TMS muscle cortical representations. Reliability analysis showed that the commonly used metrics, such as areas, volumes, and centres of gravity had a high relative and low absolute reliability for the muscles. The former assesses the results of repeated measurements, while the latter tracks the change of data in one participant. Overlaps between different muscle MCRs were highly reliable, which allowed the researchers to track the interactions between these maps.

Maria Nazarova

‘Our study is important not only for fundamental science. It also opens new opportunities for the use of nTMS motor mapping to evaluate cortical changes in healthy people and patients with neurological conditions, such as those who are undergoing rehabilitation after a stroke,’ said Maria Nazarova, head of the RSF grant project, Candidate of Science (Medicine), and researcher of the Centre for Cognition & Decision Making (Institute for Cognitive Neuroscience, HSE University) and the Federal Centre of Brain Research and Neurotechnologies.

See also:

Researchers at HSE Centre for Language and Brain Reveal Key Factors Determining Language Recovery in Patients After Brain Tumour Resection

Alina Minnigulova and Maria Khudyakova at the HSE Centre for Language and Brain have presented the latest research findings on the linguistic and neural mechanisms of language impairments and their progression in patients following neurosurgery. The scientists shared insights gained from over five years of research on the dynamics of language impairment and recovery.

Neuroscientists Reveal Anna Karenina Principle in Brain's Response to Persuasion

A team of researchers at HSE University investigated the neural mechanisms involved in how the brain processes persuasive messages. Using functional MRI, the researchers recorded how the participants' brains reacted to expert arguments about the harmful health effects of sugar consumption. The findings revealed that all unpersuaded individuals' brains responded to the messages in a similar manner, whereas each persuaded individual produced a unique neural response. This suggests that successful persuasive messages influence opinions in a highly individual manner, appearing to find a unique key to each person's brain. The study findings have been published in PNAS.

'We Are Creating the Medicine of the Future'

Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.

Smoking Habit Affects Response to False Feedback

A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.

'Neurotechnologies Are Already Helping Individuals with Language Disorders'

On November 4-6, as part of Inventing the Future International Symposium hosted by the National Centre RUSSIA, the HSE Centre for Language and Brain facilitated a discussion titled 'Evolution of the Brain: How Does the World Change Us?' Researchers from the country's leading universities, along with health professionals and neuroscience popularisers, discussed specific aspects of human brain function.

‘Scientists Work to Make This World a Better Place’

Federico Gallo is a Research Fellow at the Centre for Cognition and Decision Making of the HSE Institute for Cognitive Research. In 2023, he won the Award for Special Achievements in Career and Public Life Among Foreign Alumni of HSE University. In this interview, Federico discusses how he entered science and why he chose to stay, and shares a secret to effective protection against cognitive decline in old age.

'Science Is Akin to Creativity, as It Requires Constantly Generating Ideas'

Olga Buivolova investigates post-stroke language impairments and aims to ensure that scientific breakthroughs reach those who need them. In this interview with the HSE Young Scientists project, she spoke about the unique Russian Aphasia Test and helping people with aphasia, and about her place of power in Skhodnensky district.

Neuroscientists from HSE University Learn to Predict Human Behaviour by Their Facial Expressions

Researchers at the Institute for Cognitive Neuroscience at HSE University are using automatic emotion recognition technologies to study charitable behaviour. In an experiment, scientists presented 45 participants with photographs of dogs in need and invited them to make donations to support these animals. Emotional reactions to the images were determined through facial activity using the FaceReader program. It turned out that the stronger the participants felt sadness and anger, the more money they were willing to donate to charity funds, regardless of their personal financial well-being. The study was published in the journal Heliyon.

Spelling Sensitivity in Russian Speakers Develops by Early Adolescence

Scientists at the RAS Institute of Higher Nervous Activity and Neurophysiology and HSE University have uncovered how the foundations of literacy develop in the brain. To achieve this, they compared error recognition processes across three age groups: children aged 8 to 10, early adolescents aged 11 to 14, and adults. The experiment revealed that a child's sensitivity to spelling errors first emerges in primary school and continues to develop well into the teenage years, at least until age 14. Before that age, children are less adept at recognising misspelled words compared to older teenagers and adults. The study findings have beenpublished in Scientific Reports .

Meditation Can Cause Increased Tension in the Body

Researchers at the HSE Centre for Bioelectric Interfaces have studied how physiological parameters change in individuals who start practicing meditation. It turns out that when novices learn meditation, they do not experience relaxation but tend towards increased physical tension instead. This may be the reason why many beginners give up on practicing meditation. The study findings have been published in Scientific Reports.