«Оставаться конкурентным специалистом без применения нейросетей может стать нелегкой задачей»
Цифровые технологии прочно вошли в нашу жизнь и продолжают стремительно развиваться. Неудивительно, что все чаще возникает вопрос, сможет ли однажды искусственный интеллект полностью заменить специалистов. О перспективах лингвистики в эпоху нейросетей рассуждает Даниил Осипов, кандидат филологических наук, доцент Школы иностранных языков НИУ ВШЭ.
Также Даниил Осипов является участником проекта НИУ ВШЭ «Консультанты по преподаванию в цифровой среде» и преподает английский язык и кросс-культурный менеджмент участникам Президентской программы подготовки управленческих кадров.
Даниил Осипов
— С какими вызовами сталкивается сфера лингвистики в век цифровых технологий?
— Началась эпоха, в которую тексты, содержащие смысл, может создавать не только человек. Мы ставим задачи, но уже не контролируем каждый элемент процесса.
При этом важно отметить, что нейросети учатся на больших данных и пока допускают много ошибок.
Если говорить о межкультурной коммуникации, нейросети знают о типологии культурных различий Герта Хофстеде, делении культур Эдварда Холла, классификации культур Ричарда Льюиса. Но в любом межкультурном диалоге ключевую роль играют нюансы, которые нейросети не могут учесть.
Поэтому эффективной может быть только совместная работа нейросетей и профильных специалистов. А одним из ключевых навыков в выстраивании коммуникации с искусственным интеллектом становится промпт-инжиниринг — умение правильно задавать нейросетям вопросы.
Для этого необходимо поставить задачу, описать контекст, указать роль, привести примеры, отметить формат и задать тон. Также можно воспользоваться дополнительными показателями, например указать важность (стоит подчеркнуть нейросети, насколько значимым для вас будет ее ответ) и пообещать виртуальное вознаграждение (считается, что в таком случае нейросеть может дать более развернутый ответ).
— Сможет ли однажды искусственный интеллект заменить специалиста в сфере межкультурной коммуникации? И как остаться востребованным специалистом в условиях быстро меняющихся реалий?
— На мой взгляд, быть востребованным специалистом — значит уметь использовать в работе современные технологии, в том числе нейросети, сохраняя при этом критический подход.
Оставаться конкурентным специалистом без применения нейросетей может стать нелегкой задачей уже в ближайшем будущем. Учитывая, что нейросети общаются с нами на нашем языке, без специалистов, которые занимаются исследованием языка, не обойтись.
Например, по данным агрегаторов Will Robots take my Job и Beyond Agency, преподаватели иностранных языков — в зоне минимального риска, связанного с заменой специалистов искусственным интеллектом (вероятность 9–11%).
Более того, уверен, что лингвистам в эпоху общения с искусственным интеллектом будет отведена самая важная роль.
— Как нейросети могут помочь специалистам в области изучения иностранных языков: преподавателям, переводчикам, специалистам по межкультурной коммуникации?
— Прежде всего нейросети помогают ускорить рутинную работу. Например, преподаватели иностранных языков с их помощью могут быстро подготовить несколько вариантов тестов и других заданий, включив в промпт пример готового теста или задания.
Задача усложняется, если вы хотите создать новое задание или текст. Качество ответа нейросети в таком случае будет зависеть от умения грамотно формировать промпт.
На начальном этапе времени на разработку качественного промпта будет уходить почти столько же, сколько на подготовку материалов с нуля. Но впоследствии сформированный навык позволит значительно экономить рабочее время.
Скоро будут появляться новые модели нейросетей, которые станут способными «рассуждать», а не просто брать и интерпретировать информацию из датасетов. Например, o1-preview уже может решать сложные логические задачи.
Сегодня использование различных нейросетей позволяет создавать целый комплекс материалов:
генерирование текстов и диалогов с определенными устойчивыми словосочетаниями в ChatGPT, Perplexity, Merlin;
озвучивание и генерирование звуковых эффектов в ElevenLabs;
создание аватаров в Hedra.
С примером созданного видеоинтервью по заданной теме можно ознакомиться по ссылке.
Комбинация нескольких нейросетей, грамотный промпт-инжиниринг позволяют не только ускорить выполнение задач, но и увидеть новые идеи в сочетаниях ответов на запросы:
ChatGPT, Claude уже стали мультимодальными;
ElevenLabs, Suno, Udio полезны для работы с аудио;
Midjourney, Stable Diffusion (локальная установка), Luma Dream Machine создают изображения и видео;
KlingAI, MiniMax — новые нейросети, которые внесли ряд изменений в индустрию генерации видео и дали возможность создавать небольшие фильмы для разных профессиональных целей.
При этом у нейросетей, которые работают на разных языковых моделях, свои особенности. Например, ChatGPT 4o логичен в ответах, Claude Sonnet 3.5 готов давать развернутые ответы, которые не так легко отличить от ответов человека, Gigachat склонен проявлять «этику» в ответах на острые вопросы.
Для тренировки устного перевода будет полезен CharacterAI или приложение ChatGPT в вашем смартфоне. CharacterAI позволяет создать персонажа, задать ему роль (например, отвечать на вопросы на испанском языке) и внести в базу знаний информацию по необходимой тематике. Пример диалога.
При переводе пословиц, поговорок, фразеологизмов нейросети по умолчанию выдают дословный вариант. Решением может стать запрос о поиске эквивалента, а не перевода.

Нейросеть не напишет за вас научную работу, но поможет в подборе литературы. Хорошо с этим справляются Consensus и OpenRead, чьи базы постоянно пополняются. Если соединить поиск литературы с обработкой информации в ChatGPT или Claude с использованием Python, то можно существенно сэкономить время.
— Какие опасности и риски несет в себе обращение к нейросетям?
— Качество полученной информации, безусловно, требует проверки. Факты могут быть придуманы или искажены, расчеты — содержать ошибки. Здесь стоит подчеркнуть и филологический аспект: на выходе мы получаем хороший, логически выстроенный текст, но если его тщательно проанализировать, то в большинстве случаев обнаружим ошибки в примыкании и управлении.
Помимо этого, мы можем передать нейросети в форме запроса информацию, содержащую конфиденциальные данные, которые попадают в общую базу знаний и могут быть извлечены третьими лицами. Поэтому при формировании запросов стоит быть предельно внимательными, особенно в рамках исследовательских проектов. Решением могут стать локальные версии нейросетей, установленные на собственный компьютер.
— Что представляет собой проект «Консультанты по преподаванию в цифровой среде», участником которого вы являетесь?
— Проект нацелен на оказание преподавателям НИУ ВШЭ постоянной и квалифицированной поддержки по методическим вопросам преподавания в цифровой среде или в офлайн-среде, но с использованием цифровых образовательных технологий.
В настоящее время многие преподаватели НИУ ВШЭ, участвующие в проекте, проводят консультации по эффективному использованию нейросетей в образовательном процессе.
Больше информации — на странице проекта.
Вам также может быть интересно:
В Вышке создали собственную MLOps-платформу
Ученые НИУ ВШЭ создали MLOps-платформу SmartMLOps. Она предназначена для исследователей в области искусственного интеллекта, которые хотели бы превратить свое изобретение в полноценный сервис. В будущем на платформе могут быть развернуты ИИ-помощники для упрощения образовательного процесса, оказания медицинской помощи, консультирования и решения многих других задач. Создатели ИИ-технологий смогут получить готовый к работе сервис в течение считанных часов. На суперкомпьютере Вышки этот сервис может быть запущен в несколько кликов.
«От нашей общей работы зависит будущее»: что несет человечеству развитие ИИ
Какие перспективы и вызовы для человечества несет развитие технологий искусственного интеллекта? Как его используют ученые? Каким будет мир, где доминирует ИИ? Эти и другие темы обсудили эксперты на форсайт-сессии «Будущее исследований в сфере искусственного интеллекта», которая прошла в НИУ ВШЭ.
ИИ позволит точно моделировать производительность систем хранения данных
Исследователи факультета компьютерных наук НИУ ВШЭ разработали новый подход к моделированию систем хранения данных на основе генеративных моделей машинного обучения. Он позволяет с высокой точностью предсказывать ключевые характеристики работы таких систем при различных условиях. Результаты опубликованы в журнале IEEE Access.
ИИ в образовании: как преодолеть соблазн готовых решений
Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.
Большинство студентов не верят, что ИИ сможет заменить их на работе
Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.
Точный ИИ-оракул: какие тренды интересуют бизнес
Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.
Перспективы ИИ: математика машинного обучения в фокусе
Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.
Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники
45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.
«Идею всегда задает человек»: что дает ИИ образованию и медиа
ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».
В Вышке стартовали открытые семинары «ИИ в индустрии»
Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.