• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Быть, а не казаться: как вырастить из ИИ профессионала

Быть, а не казаться: как вырастить из ИИ профессионала

© iStock

Пока ученые спорят о пользе и вреде искусственного интеллекта, молодежь активно осваивает и интегрирует нейросети в свою жизнь, приспосабливая нашу реальность к новым условиям. О том, как дообучить LLM, чтобы они смогли служить полноценными ассистентами в профессиональной среде, обсудили в Вышке на воркшопе «Большие языковые модели в науке и в жизни».

НИУ ВШЭ совместно со Сбером открыл специальное двухдневное мероприятие, в рамках которого эксперты из разных отраслей провели дискуссии на тему «Большие языковые модели в науке и в жизни». Первый день воркшопа был посвящен обсуждению плюсов и минусов вхождения больших языковых моделей в бытовую и профессиональную реальность, а также того, как LLM могут и должны улучшиться, чтобы стать помощниками человека в области интеллектуальной рутины.

Воркшоп открылся панельной дискуссией, участники которой обсудили, как сейчас работают большие языковые модели и какие ожидания существуют у рынка в отношении их применения. Модератором выступила Екатерина Кручинская, директор по обеспечению деятельности научного руководителя НИУ ВШЭ, старший преподаватель кафедры высшей математики НИУ ВШЭ.

По мнению участников дискуссии, основа будущих прорывных разработок в области генеративного искусственного интеллекта лежит в области коллаборации разработчиков генеративных моделей и экспертов академической среды: первые знают, как обучать модели, а вторые — как обучать людей.

Ярослав Кузьминов, научный руководитель НИУ ВШЭ
© Высшая школа экономики

«В развитие ИИ уже вложены очень большие деньги — десятки миллиардов долларов, но пока неясно, какую отдачу и когда это принесет», — отметил во вступительном слове научный руководитель НИУ ВШЭ Ярослав Кузьминов. По его словам, одним из главных ожиданий от ИИ является замещение рутинных функций, которые занимают достаточную долю в бюджете времени.

Как пример, одной из ожидаемых возможностей LLM в сфере образования может быть раздача ученикам заданий и их проверка, на основе которой будет генерироваться готовое резюме для предоставления ученику обратной связи. Эффект этой разработки — снижение образовательной неуспешности ученика, которая возникает из-за отсутствия постоянной обратной связи, точечно контролирующей прогресс в обучении. Если искусственный интеллект сможет выполнять эту функцию, педагогам удастся уделять ученикам больше внимания и сформировать более творческий и результативный процесс обучения.

Еще одно ожидание — написание целостного саммари объемных научных текстов, публикующихся сейчас в большом количестве, а также создание формализованных документов, в том числе библиографии. Сейчас реализовать эту возможность затруднительно даже при использовании самых продвинутых больших языковых моделей из-за высоких рисков их галлюцинирования.

Роман Янковский

Последняя функция ИИ, которая была названа, — умный помощник юриста, который сможет найти информацию в нормативно-правовых актах под запрос клиента, проанализировать договоры с точки зрения юридических рисков и т.д. Далее эту возможность обсудили более подробно на круглом столе «Прикладные приложения больших языковых моделей в юриспруденции» при участии сотрудников Сбера Ксении Брянцевой (руководитель продукта GigaLegal) и Романа Кошелева (руководитель платформы GigaLegal), а также заведующего Центром трансформации юридического образования НИУ ВШЭ Романа Янковского.

Екатерина Кручинская

Все эти ожидания по большому счету требуют того, чтобы искусственный интеллект представлял собой некоторый аналог нормально обученного профессионала — педагога, юриста, экономиста и так далее. Но это ожидание пока плохо накладывается на эволюцию ИИ. Модератор дискуссии Екатерина Кручинская отметила, что модели уже сдают экзамены, но у них это работает не как у человека: знание огромного количества теоретических фактов не ведет к успешному оперированию этими знаниями в профессиональном контексте. Ярослав Кузьминов добавил, что в этом отношении странно было бы ожидать от актера, играющего маршала Жукова, правильного проведения военной операции, если бы он реально оказался на месте военачальника. То есть сегодняшний ИИ «всячески старается быть похожим на человека, но он пока не профессионал, а имитатор, и мы хотим помочь ему преодолеть эту планку», отметил научный руководитель Вышки.

Сергей Марков

О нынешнем состоянии генеративных моделей в России и мире рассказал Сергей Марков, управляющий директор — начальник управления экспериментальных систем машинного обучения департамента общих сервисов «Салют» Сбербанка. Сергей отметил, что, несмотря на колоссальный шаг вперед, который был сделан в области машинного обучения, на сегодняшний день существует большое количество актуальных вызовов и барьеров для развития этой технологии. Но в целом, благодаря большому притоку специалистов и ресурсов в последние годы, «поле исследований выглядит весьма оптимистично».

Развитие технологий искусственного интеллекта имеет для человечества экзистенциальное значение, убежден эксперт.

Максим Волошин и Федор Минькин из команды GigaChat отметили важность таргетного подхода к внедрению больших языковых моделей. Бизнес только недавно понял, что далеко не всегда нужно заботиться о том, чтобы внедрить в уже имеющуюся технологию генеративный ИИ, — может оказаться, что мы от этого потеряем. Более того, большая языковая модель — это не швейцарский нож, который решает все проблемы разом, а точечное решение, которое следует применять исключительно в случае, если мы понимаем характеристики полезного «выхлопа».

Безусловно, младшее поколение, как обычно, ушло далеко вперед в освоении технологий ИИ. «Пока разработчики и ученые решают, что можно, а что нельзя, в каких секторах применять либо ограничить ИИ, студенты уже давно освоили и вовсю применяют эти технологии», — напомнил Ярослав Кузьминов. По его словам, для сферы образования вопрос использования LLM стоит очень остро, так же как для юриспруденции и экономики, поэтому пора переходить от слов к работе над созданием продуктов на основе этой технологии, в том числе тех, которые могут быть широко коммерциализированы или значимы в создании общественных эффектов: например, могут бороться с образовательной неуспешностью или низкой производительностью труда.

Сергей Рощин, проректор НИУ ВШЭ

Эту идею в дальнейшем участники панельной дискуссии обсудили более предметно на круглом столе «Влияние больших лингвистических моделей на современные образовательные модели и технологии», где проректор НИУ ВШЭ Сергей Рощин отметил, что мы вынуждены констатировать проблему отсутствия владения навыками использования ИИ у преподавателей, а директор Института педагогики СПбГУ Елена Казакова поставила вопрос о том, как внедрять технологии ИИ так, чтобы это было на пользу, а не во вред, и как перестать бороться с тем, что неизбежно.

Алёна Феногенова

Важная часть первого дня воркшопа также была сосредоточена на обсуждении подходов к оценке больших языковых моделей. С докладом выступила Алёна Феногенова, руководитель команды AGI NLP SberDevices, рассказав про бенчмарк MERA, специфика которого относительно профессионального контекста была обсуждена с приглашенным экспертом из ассоциации «Альянс в сфере искусственного интеллекта» Егором Низамовым. Также профессиональную оценку искусственного интеллекта представили в пока непривычном контексте — с помощью современных методов психометрики, о чем рассказала Елена Карданова, научный руководитель Центра психометрики и измерений в образовании НИУ ВШЭ.

Второй день был посвящен специализированным мини-курсам и лекциям о ML и языковых моделях.

Вам также может быть интересно:

Динамику ESG в мире обсудили на международной конференции по вопросам устойчивого развития в Вышке

Участники форума «ESG Corporate Dynamics: the Challenges for Emerging Capital Markets» обсудили использование ИИ в сфере устойчивого развития, влияние климатической уязвимости на привлечение институциональных инвесторов, тренды ESG-политики в Южной Корее и Китае, разработку интегральной ESG-модели для оценки вероятности дефолта компаний и многие другие вопросы. В работе конференции, организованной факультетом экономических наук ВШЭ, приняли участие более 20 ученых из ведущих университетов Китая, Египта, Малайзии и других стран.

Исследователи из ВШЭ разработали Python-библиотеку для анализа данных движений глаз

Исследовательская группа из Высшей школы экономики разработала Python-библиотеку EyeFeatures, предназначенную для анализа и моделирования данных движений глаз. Инструмент призван облегчить работу ученых и разработчиков, предоставляя им возможность эффективно обрабатывать сложные данные и строить предсказательные модели.

Достижения Вышки в сфере ИИ представили на AIJ

На площадке международной конференции AI Journey состоялась сессия под руководством вице-премьера Дмитрия Чернышенко, посвященная достижениям российских исследовательских центров в области искусственного интеллекта. Руководитель Центра ИИ ВШЭ Алексей Масютин представил ключевые разработки исследователей центра.

Фантастика vs реальность: ВШЭ и Евразийский НОЦ обучили преподавателей Башкортостана работе с ИИ

В начале ноября в Уфе состоялось обучение по программе повышения квалификации «Искусственный интеллект и его применение в научных исследованиях» для преподавателей и ученых Республики Башкортостан. Организаторами программы выступили Центр непрерывного образования ФКН НИУ ВШЭ и Евразийский научно-образовательный центр. Обучение было реализовано в сетевой форме по трем направлениям: гуманитарному, естественно-научному и техническому.

Искусственная революция: как ИИ меняет образование

Искусственный интеллект стремительно ворвался в образовательное пространство и стал помощником и напарником студентов и преподавателей. Сегодня владение ИИ-инструментами становится универсальной компетенцией и требует от педагогов освоения новых навыков и подходов как к учебному процессу, так и к оцениванию успехов студентов.

Ученые НИУ ВШЭ признаны лидерами в сфере развития ИИ

В рамках международной конференции по искусственному интеллекту и машинному обучению AI Journey наградили победителей Национальной премии «Лидеры ИИ — 2024». Лауреатами стали Сергей Самсонов, научный сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных Института искусственного интеллекта и цифровых наук ФКН ВШЭ, и Елена Тутубалина из Института искусственного интеллекта AIRI и Научно-учебной лаборатории моделей и методов вычислительной прагматики ФКН ВШЭ. Еще один ученый Вышки стал финалистом премии.

Обуздать стихию: как ИИ интегрируется в учебный процесс в странах мира

Искусственный интеллект постепенно становится незаменимой частью высшего образования. Его используют и студенты, и преподаватели для снижения объема рутинных задач и расширения своих возможностей. Ограничения и перспективы ИИ рассматриваются в докладе «Начало конца или новой эпохи? Эффекты генеративного искусственного интеллекта (ГИИ) в высшем образовании», который вышел в журнале «Современная аналитика образования» под научной редакцией научного руководителя НИУ ВШЭ Ярослава Кузьминова.

Виртуальный Моцарт, бот «Венчурный капитал» и генерация учебных видео: как в Вышке применяют ИИ

В середине ноября в Вышке состоялся митап, на котором преподаватели, исследователи и административные работники университета представили собственные проекты и поделились опытом использования ИИ-технологий в образовательной и научной деятельности. Встреча прошла в рамках программы повышения квалификации «Искусственный интеллект в образовании и исследованиях».

Названы ключевые тренды в образовании — 2025

Искусственный интеллект и виртуальная реальность все чаще становятся частью образования. Больше половины преподавателей-новаторов готовы поддерживать мультимодальные подходы с использованием ИИ, а каждый третий студент считает, что технологии способны сделать учебу интереснее и удобнее. Такие данные представили Лаборатория инноваций в образовании ВШЭ и холдинг Ultimate Education.

Студенты Вышки выиграли международный этап «Цифрового прорыва»

В начале ноября в Калининграде прошел международный этап хакатона «Цифровой прорыв. Сезон: Искусственный интеллект». В нем приняли участие 203 команды в составе 1569 человек, и среди них — студенты факультета компьютерных наук ВШЭ, призеры всероссийского этапа. Они соревновались в решении задач от партнеров хакатона — РЖД, Media Wise, «Атома», «Росатома», «Силы» и других организаций.